people
Dr Roxana Carare
Vascular

Professor of Clinical Neuroanatomy and Experimental Neuropathology
Theme Group:
About:
Current theme Projects:
Adrenergic interventions for novel treatment strategies in Alzheimer’s disease
Computational modelling shows that innervation of vascular smooth muscle cells provides the motive force for IPAD, which has led us to hypothesize that 1) failure of elimination of Aβ along IPAD pathways could be a …
Harnessing the heart-lung-brain interactions in the search for vascular biomarkers for neurological dysfunction
As an interdisciplinary team from University Hospital Southampton & University of Southampton comprising specialists in cardiothoracic surgery, ophthalmology, cardiac perfusion, imaging, mathematics and neuroanatomy we are in the optimal position to conduct a study in …
Recent publications:
Decreased CSF clearance and increased brain amyloid in Alzheimer's disease
Decreased CSF clearance and increased brain amyloid in Alzheimer's disease
In sporadic Alzheimer's disease (AD), brain amyloid-beta (Aβ) deposition is believed to be a consequence of impaired Aβ clearance, but this relationship is not well established in living humans. CSF clearance, a major feature of brain glymphatic clearance (BGC), has been shown to be abnormal in AD murine models. MRI phase contrast and intrathecally delivered contrast studies have reported reduced CSF flow in AD. Using PET and tau tracer F-THK5117, we previously reported that the ventricular CSF clearance of the PET tracer was reduced in AD and associated with elevated brain Aβ levels.
Physiology and Clinical Relevance of Enlarged Perivascular Spaces in the Aging Brain
Physiology and Clinical Relevance of Enlarged Perivascular Spaces in the Aging Brain
Perivascular spaces (PVS) are fluid-filled compartments that are part of the cerebral blood vessel wall and represent the conduit for fluid transport in and out of the brain. PVS are considered pathologic when sufficiently enlarged to be visible on MRI. Recent studies have demonstrated that enlarged PVS (ePVS) may have clinical consequences related to cognition. Emerging literature points to arterial stiffening and abnormal protein aggregation in vessel walls as 2 possible mechanisms that drive ePVS formation. We describe the clinical consequences, anatomy, fluid dynamics, physiology, risk factors, and in vivo quantification methods of ePVS. Given competing views of PVS physiology, we detail the 2 most prominent theoretical views and review ePVS associations with other common small vessel disease markers. Because ePVS are a marker of small vessel disease and ePVS burden is higher in Alzheimer disease, a comprehensive understanding about ePVS is essential in developing prevention and treatment strategies.
TUBE Project: Transport-Derived Ultrafines and the Brain Effects
TUBE Project: Transport-Derived Ultrafines and the Brain Effects
The adverse effects of air pollutants on the respiratory and cardiovascular systems are unquestionable. However, in recent years, indications of effects beyond these organ systems have become more evident. Traffic-related air pollution has been linked with neurological diseases, exacerbated cognitive dysfunction, and Alzheimer's disease. However, the exact air pollutant compositions and exposure scenarios leading to these adverse health effects are not known. Although several components of air pollution may be at play, recent experimental studies point to a key role of ultrafine particles (UFPs). While the importance of UFPs has been recognized, almost nothing is known about the smallest fraction of UFPs, and only >23 nm emissions are regulated in the EU. Moreover, the role of the semivolatile fraction of the emissions has been neglected. The Transport-Derived Ultrafines and the Brain Effects (TUBE) project will increase knowledge on harmful ultrafine air pollutants, as well as semivolatile compounds related to adverse health effects. By including all the major current combustion and emission control technologies, the TUBE project aims to provide new information on the adverse health effects of current traffic, as well as information for decision makers to develop more effective emission legislation. Most importantly, the TUBE project will include adverse health effects beyond the respiratory system; TUBE will assess how air pollution affects the brain and how air pollution particles might be removed from the brain. The purpose of this report is to describe the TUBE project, its background, and its goals.
The Brain-Nose Interface: A Potential Cerebrospinal Fluid Clearance Site in Humans
The Brain-Nose Interface: A Potential Cerebrospinal Fluid Clearance Site in Humans
The human brain functions at the center of a network of systems aimed at providing a structural and immunological layer of protection. The cerebrospinal fluid (CSF) maintains a physiological homeostasis that is of paramount importance to proper neurological activity. CSF is largely produced in the choroid plexus where it is continuous with the brain extracellular fluid and circulates through the ventricles. CSF movement through the central nervous system has been extensively explored. Across numerous animal species, the involvement of various drainage pathways in CSF, including arachnoid granulations, cranial nerves, perivascular pathways, and meningeal lymphatics, has been studied. Among these, there is a proposed CSF clearance route spanning the olfactory nerve and exiting the brain at the cribriform plate and entering lymphatics. While this pathway has been demonstrated in multiple animal species, evidence of a similar CSF egress mechanism involving the nasal cavity in humans remains poorly consolidated. This review will synthesize contemporary evidence surrounding CSF clearance at the nose-brain interface, examining across species this anatomical pathway, and its possible significance to human neurodegenerative disease. Our discussion of a bidirectional nasal pathway includes examination of the immune surveillance in the olfactory region protecting the brain. Overall, we expect that an expanded discussion of the brain-nose pathway and interactions with the environment will contribute to an improved understanding of neurodegenerative and infectious diseases, and potentially to novel prevention and treatment considerations.
Impaired Glymphatic Function and Pulsation Alterations in a Mouse Model of Vascular Cognitive Impairment
Impaired Glymphatic Function and Pulsation Alterations in a Mouse Model of Vascular Cognitive Impairment
Large vessel disease and carotid stenosis are key mechanisms contributing to vascular cognitive impairment (VCI) and dementia. Our previous work, and that of others, using rodent models, demonstrated that bilateral common carotid stenosis (BCAS) leads to cognitive impairment via gradual deterioration of the neuro-glial-vascular unit and accumulation of amyloid-β (Aβ) protein. Since brain-wide drainage pathways (glymphatic) for waste clearance, including Aβ removal, have been implicated in the pathophysiology of VCI via glial mechanisms, we hypothesized that glymphatic function would be impaired in a BCAS model and exacerbated in the presence of Aβ. Male wild-type and Tg-SwDI (model of microvascular amyloid) mice were subjected to BCAS or sham surgery which led to a reduction in cerebral perfusion and impaired spatial learning acquisition and cognitive flexibility. After 3 months survival, glymphatic function was evaluated by cerebrospinal fluid (CSF) fluorescent tracer influx. We demonstrated that BCAS caused a marked regional reduction of CSF tracer influx in the dorsolateral cortex and CA1-DG molecular layer. In parallel to these changes increased reactive astrogliosis was observed post-BCAS. To further investigate the mechanisms that may lead to these changes, we measured the pulsation of cortical vessels. BCAS impaired vascular pulsation in pial arteries in WT and Tg-SwDI mice. Our findings show that BCAS influences VCI and that this is paralleled by impaired glymphatic drainage and reduced vascular pulsation. We propose that these additional targets need to be considered when treating VCI.
Contact:
LD 66 Clinical Neurosciences
Southampton General Hospital
South Academic Block Level D MP806
SO16 6YD
Website: www.cararegroup.org