Theme lead
Publications by theme lead
Recent publications
How do neurons age? A focused review on the aging of the microtubular cytoskeleton
Richardson B, Goedert T, Quraishe S, Deinhardt K and Mudher A
How do neurons age? A focused review on the aging of the microtubular cytoskeleton
Richardson B, Goedert T, Quraishe S, Deinhardt K and Mudher A
Aging is the leading risk factor for Alzheimer's disease and other neurodegenerative diseases. We now understand that a breakdown in the neuronal cytoskeleton, mainly underpinned by protein modifications leading to the destabilization of microtubules, is central to the pathogenesis of Alzheimer's disease. This is accompanied by morphological defects across the somatodendritic compartment, axon, and synapse. However, knowledge of what occurs to the microtubule cytoskeleton and morphology of the neuron during physiological aging is comparatively poor. Several recent studies have suggested that there is an age-related increase in the phosphorylation of the key microtubule stabilizing protein tau, a modification, which is known to destabilize the cytoskeleton in Alzheimer's disease. This indicates that the cytoskeleton and potentially other neuronal structures reliant on the cytoskeleton become functionally compromised during normal physiological aging. The current literature shows age-related reductions in synaptic spine density and shifts in synaptic spine conformation which might explain age-related synaptic functional deficits. However, knowledge of what occurs to the microtubular and actin cytoskeleton, with increasing age is extremely limited. When considering the somatodendritic compartment, a regression in dendrites and loss of dendritic length and volume is reported whilst a reduction in soma volume/size is often seen. However, research into cytoskeletal change is limited to a handful of studies demonstrating reductions in and mislocalizations of microtubule-associated proteins with just one study directly exploring the integrity of the microtubules. In the axon, an increase in axonal diameter and age-related appearance of swellings is reported but like the dendrites, just one study investigates the microtubules directly with others reporting loss or mislocalization of microtubule-associated proteins. Though these are the general trends reported, there are clear disparities between model organisms and brain regions that are worthy of further investigation. Additionally, longitudinal studies of neuronal/cytoskeletal aging should also investigate whether these age-related changes contribute not just to vulnerability to disease but also to the decline in nervous system function and behavioral output that all organisms experience. This will highlight the utility, if any, of cytoskeletal fortification for the promotion of healthy neuronal aging and potential protection against age-related neurodegenerative disease. This review seeks to summarize what is currently known about the physiological aging of the neuron and microtubular cytoskeleton in the hope of uncovering mechanisms underpinning age-related risk to disease.
Alzheimer's disease pathophysiology in the Retina
Gaire BP, Koronyo Y, Fuchs DT, Shi H, Rentsendorj A, Danziger R, Vit JP, Mirzaei N, Doustar J, Sheyn J, Hampel H, Vergallo A, Davis MR, Jallow O, Baldacci F, Verdooner SR, Barron E, Mirzaei M, Gupta VK, Graham SL, Tayebi M, Carare RO, Sadun AA, Miller CA, Dumitrascu OM, Lahiri S, Gao L, Black KL and Koronyo-Hamaoui M
Alzheimer's disease pathophysiology in the Retina
Gaire BP, Koronyo Y, Fuchs DT, Shi H, Rentsendorj A, Danziger R, Vit JP, Mirzaei N, Doustar J, Sheyn J, Hampel H, Vergallo A, Davis MR, Jallow O, Baldacci F, Verdooner SR, Barron E, Mirzaei M, Gupta VK, Graham SL, Tayebi M, Carare RO, Sadun AA, Miller CA, Dumitrascu OM, Lahiri S, Gao L, Black KL and Koronyo-Hamaoui M
The retina is an emerging CNS target for potential noninvasive diagnosis and tracking of Alzheimer's disease (AD). Studies have identified the pathological hallmarks of AD, including amyloid β-protein (Aβ) deposits and abnormal tau protein isoforms, in the retinas of AD patients and animal models. Moreover, structural and functional vascular abnormalities such as reduced blood flow, vascular Aβ deposition, and blood-retinal barrier damage, along with inflammation and neurodegeneration, have been described in retinas of patients with mild cognitive impairment and AD dementia. Histological, biochemical, and clinical studies have demonstrated that the nature and severity of AD pathologies in the retina and brain correspond. Proteomics analysis revealed a similar pattern of dysregulated proteins and biological pathways in the retina and brain of AD patients, with enhanced inflammatory and neurodegenerative processes, impaired oxidative-phosphorylation, and mitochondrial dysfunction. Notably, investigational imaging technologies can now detect AD-specific amyloid deposits, as well as vasculopathy and neurodegeneration in the retina of living AD patients, suggesting alterations at different disease stages and links to brain pathology. Current and exploratory ophthalmic imaging modalities, such as optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy, and hyperspectral imaging, may offer promise in the clinical assessment of AD. However, further research is needed to deepen our understanding of AD's impact on the retina and its progression. To advance this field, future studies require replication in larger and diverse cohorts with confirmed AD biomarkers and standardized retinal imaging techniques. This will validate potential retinal biomarkers for AD, aiding in early screening and monitoring.
Deaf awareness strategies in healthcare
Hough K, Tsimpida D, Boswell S, Satchwell C, Smith S, Dhuria P, Newberry E, Impey B, Hudson M and Newman T
Mild Systemic Inflammation Increases Erythrocyte Fragility
Stuart CM, Jacob C, Varatharaj A, Howard S, Chouhan JK, Teeling JL and Galea I
Mild Systemic Inflammation Increases Erythrocyte Fragility
Stuart CM, Jacob C, Varatharaj A, Howard S, Chouhan JK, Teeling JL and Galea I
There is growing evidence that inflammation impairs erythrocyte structure and function. We assessed the impact of mild systemic inflammation on erythrocyte fragility in three different settings. In order to investigate causation, erythrocyte osmotic fragility was measured in mice challenged with a live attenuated bacterial strain to induce low-grade systemic inflammation; a significant increase in erythrocyte osmotic fragility was observed. To gather evidence that systemic inflammation is associated with erythrocyte fragility in humans, two observational studies were conducted. First, using a retrospective study design, the relationship between reticulocyte-based surrogate markers of haemolysis and high-sensitivity C-reactive protein was investigated in 9292 healthy participants of the UK Biobank project. Secondly, we prospectively assessed the relationship between systemic inflammation (measured by the urinary neopterin/creatinine ratio) and erythrocyte osmotic fragility in a mixed population (n = 54) of healthy volunteers and individuals with long-term medical conditions. Both human studies were in keeping with a relationship between inflammation and erythrocyte fragility. Taken together, we conclude that mild systemic inflammation increases erythrocyte fragility and may contribute to haemolysis. Further research is needed to assess the molecular underpinnings of this pathway and the clinical implications in inflammatory conditions.
Longitudinal urinary neopterin is associated with hearing threshold change over time in independent older adults
Kidd RL, Agyemang-Prempeh A, Sanderson A, Stuart C, Mahajan S, Verschuur CA and Newman TA
Longitudinal urinary neopterin is associated with hearing threshold change over time in independent older adults
Kidd RL, Agyemang-Prempeh A, Sanderson A, Stuart C, Mahajan S, Verschuur CA and Newman TA
Low-grade chronic inflammation is associated with many age-related conditions. Non-invasive methods to monitor low-grade chronic inflammation may improve the management of older people at risk of poorer outcomes. This longitudinal cohort study has determined baseline inflammation using neopterin volatility in monthly urine samples of 45 independent older adults (aged 65-75 years). Measurement of neopterin, an inflammatory metabolite, enabled stratification of individuals into risk categories based on how often in a 12-month period their neopterin level was raised. Hearing was measured (pure-tone audiometry) at baseline, 1 year and 3 years of the study. Results show that those in the highest risk category (neopterin raised greater than 50% of the time) saw greater deterioration, particularly in high-frequency, hearing. A one-way Welch's ANOVA showed a significant difference between the risk categories for change in high-frequency hearing (W (3, 19.6) = 9.164, p = 0.0005). Despite the study size and duration individuals in the highest risk category were more than twice as likely to have an additional age-related morbidity than those in the lowest risk category. We conclude that volatility of neopterin in urine may enable stratification of those at greatest risk of progression of hearing loss.
Retinal peri-arteriolar versus peri-venular amyloidosis, hippocampal atrophy, and cognitive impairment: exploratory trial
Dumitrascu OM, Doustar J, Fuchs DT, Koronyo Y, Sherman DS, Miller MS, Johnson KO, Carare RO, Verdooner SR, Lyden PD, Schneider JA, Black KL and Koronyo-Hamaoui M
Retinal peri-arteriolar versus peri-venular amyloidosis, hippocampal atrophy, and cognitive impairment: exploratory trial
Dumitrascu OM, Doustar J, Fuchs DT, Koronyo Y, Sherman DS, Miller MS, Johnson KO, Carare RO, Verdooner SR, Lyden PD, Schneider JA, Black KL and Koronyo-Hamaoui M
The relationship between amyloidosis and vasculature in cognitive impairment and Alzheimer's disease (AD) pathogenesis is increasingly acknowledged. We conducted a quantitative and topographic assessment of retinal perivascular amyloid plaque (AP) distribution in individuals with both normal and impaired cognition. Using a retrospective dataset of scanning laser ophthalmoscopy fluorescence images from twenty-eight subjects with varying cognitive states, we developed a novel image processing method to examine retinal peri-arteriolar and peri-venular curcumin-positive AP burden. We further correlated retinal perivascular amyloidosis with neuroimaging measures and neurocognitive scores. Our study unveiled that peri-arteriolar AP counts surpassed peri-venular counts throughout the entire cohort (P < 0.0001), irrespective of the primary, secondary, or tertiary vascular branch location, with a notable increase among cognitively impaired individuals. Moreover, secondary branch peri-venular AP count was elevated in the cognitively impaired (P < 0.01). Significantly, peri-venular AP count, particularly in secondary and tertiary venules, exhibited a strong correlation with clinical dementia rating, Montreal cognitive assessment score, hippocampal volume, and white matter hyperintensity count. In conclusion, our exploratory analysis detected greater peri-arteriolar versus peri-venular amyloidosis and a marked elevation of amyloid deposition in secondary branch peri-venular regions among cognitively impaired subjects. These findings underscore the potential feasibility of retinal perivascular amyloid imaging in predicting cognitive decline and AD progression. Larger longitudinal studies encompassing diverse populations and AD-biomarker confirmation are warranted to delineate the temporal-spatial dynamics of retinal perivascular amyloid deposition in cognitive impairment and the AD continuum.
Is CAA a perivascular brain clearance disease? A discussion of the evidence to date and outlook for future studies
van Veluw SJ, Benveniste H, Bakker ENTP, Carare RO, Greenberg SM, Iliff JJ, Lorthois S, Van Nostrand WE, Petzold GC, Shih AY and van Osch MJP
Is CAA a perivascular brain clearance disease? A discussion of the evidence to date and outlook for future studies
van Veluw SJ, Benveniste H, Bakker ENTP, Carare RO, Greenberg SM, Iliff JJ, Lorthois S, Van Nostrand WE, Petzold GC, Shih AY and van Osch MJP
The brain's network of perivascular channels for clearance of excess fluids and waste plays a critical role in the pathogenesis of several neurodegenerative diseases including cerebral amyloid angiopathy (CAA). CAA is the main cause of hemorrhagic stroke in the elderly, the most common vascular comorbidity in Alzheimer's disease and also implicated in adverse events related to anti-amyloid immunotherapy. Remarkably, the mechanisms governing perivascular clearance of soluble amyloid β-a key culprit in CAA-from the brain to draining lymphatics and systemic circulation remains poorly understood. This knowledge gap is critically important to bridge for understanding the pathophysiology of CAA and accelerate development of targeted therapeutics. The authors of this review recently converged their diverse expertise in the field of perivascular physiology to specifically address this problem within the framework of a Leducq Foundation Transatlantic Network of Excellence on Brain Clearance. This review discusses the overarching goal of the consortium and explores the evidence supporting or refuting the role of impaired perivascular clearance in the pathophysiology of CAA with a focus on translating observations from rodents to humans. We also discuss the anatomical features of perivascular channels as well as the biophysical characteristics of fluid and solute transport.
[1-C]-Butanol Positron Emission Tomography reveals an impaired brain to nasal turbinates pathway in aging amyloid positive subjects
Mehta NH, Wang X, Keil SA, Xi K, Zhou L, Lee K, Tan W, Spector E, Goldan A, Kelly J, Karakatsanis NA, Mozley PD, Nehmeh S, Chazen JL, Morin S, Babich J, Ivanidze J, Pahlajani S, Tanzi EB, Saint-Louis L, Butler T, Chen K, Rusinek H, Carare RO, Li Y, Chiang GC and de Leon MJ
[1-C]-Butanol Positron Emission Tomography reveals an impaired brain to nasal turbinates pathway in aging amyloid positive subjects
Mehta NH, Wang X, Keil SA, Xi K, Zhou L, Lee K, Tan W, Spector E, Goldan A, Kelly J, Karakatsanis NA, Mozley PD, Nehmeh S, Chazen JL, Morin S, Babich J, Ivanidze J, Pahlajani S, Tanzi EB, Saint-Louis L, Butler T, Chen K, Rusinek H, Carare RO, Li Y, Chiang GC and de Leon MJ
Reduced clearance of cerebrospinal fluid (CSF) has been suggested as a pathological feature of Alzheimer's disease (AD). With extensive documentation in non-human mammals and contradictory human neuroimaging data it remains unknown whether the nasal mucosa is a CSF drainage site in humans. Here, we used dynamic PET with [1-C]-Butanol, a highly permeable radiotracer with no appreciable brain binding, to test the hypothesis that tracer drainage from the nasal pathway reflects CSF drainage from brain. As a test of the hypothesis, we examined whether brain and nasal fluid drainage times were correlated and affected by brain amyloid.
Patient and public involvement and engagement (PPIE): how valuable and how hard? An evaluation of ALL_EARS@UoS PPIE group, 18 months on
Hough K, Grasmeder M, Parsons H, Jones WB, Smith S, Satchwell C, Hobday I, Taylor S and Newman T
Patient and public involvement and engagement (PPIE): how valuable and how hard? An evaluation of ALL_EARS@UoS PPIE group, 18 months on
Hough K, Grasmeder M, Parsons H, Jones WB, Smith S, Satchwell C, Hobday I, Taylor S and Newman T
ALL_EARS@UoS is a patient and public involvement and engagement (PPIE) group for people with lived experience of hearing loss. The purpose of the group is to share experiences of hearing loss and hearing healthcare, inform research and improve services for patients at University of Southampton Auditory Implant Service. A year after inception, we wanted to critically reflect on the value and challenges of the group. Four members of ALL_EARS@UoS were recruited to an evaluation steering group. This paper reports the evaluation of the group using the UK Standards for Public Involvement.
Shaping the future of preclinical development of successful disease-modifying drugs against Alzheimer's disease: a systematic review of tau propagation models
Basheer N, Buee L, Brion JP, Smolek T, Muhammadi MK, Hritz J, Hromadka T, Dewachter I, Wegmann S, Landrieu I, Novak P, Mudher A and Zilka N
Shaping the future of preclinical development of successful disease-modifying drugs against Alzheimer's disease: a systematic review of tau propagation models
Basheer N, Buee L, Brion JP, Smolek T, Muhammadi MK, Hritz J, Hromadka T, Dewachter I, Wegmann S, Landrieu I, Novak P, Mudher A and Zilka N
The transcellular propagation of the aberrantly modified protein tau along the functional brain network is a key hallmark of Alzheimer's disease and related tauopathies. Inoculation-based tau propagation models can recapitulate the stereotypical spread of tau and reproduce various types of tau inclusions linked to specific tauopathy, albeit with varying degrees of fidelity. With this systematic review, we underscore the significance of judicious selection and meticulous functional, biochemical, and biophysical characterization of various tau inocula. Furthermore, we highlight the necessity of choosing suitable animal models and inoculation sites, along with the critical need for validation of fibrillary pathology using confirmatory staining, to accurately recapitulate disease-specific inclusions. As a practical guide, we put forth a framework for establishing a benchmark of inoculation-based tau propagation models that holds promise for use in preclinical testing of disease-modifying drugs.
A Systematic Review and Meta-Analysis of the Pathology Underlying Aneurysm Enhancement on Vessel Wall Imaging
Digpal R, Arkill KP, Doherty R, Yates J, Milne LK, Broomes N, Katsamenis OL, Macdonald J, Ditchfield A, Narata AP, Darekar A, Carare RO, Fabian M, Galea I and Bulters D
A Systematic Review and Meta-Analysis of the Pathology Underlying Aneurysm Enhancement on Vessel Wall Imaging
Digpal R, Arkill KP, Doherty R, Yates J, Milne LK, Broomes N, Katsamenis OL, Macdonald J, Ditchfield A, Narata AP, Darekar A, Carare RO, Fabian M, Galea I and Bulters D
Intracranial aneurysms are common, but only a minority rupture and cause subarachnoid haemorrhage, presenting a dilemma regarding which to treat. Vessel wall imaging (VWI) is a contrast-enhanced magnetic resonance imaging (MRI) technique used to identify unstable aneurysms. The pathological basis of MR enhancement of aneurysms is the subject of debate. This review synthesises the literature to determine the pathological basis of VWI enhancement. PubMed and Embase searches were performed for studies reporting VWI of intracranial aneurysms and their correlated histological analysis. The risk of bias was assessed. Calculations of interdependence, univariate and multivariate analysis were performed. Of 228 publications identified, 7 met the eligibility criteria. Individual aneurysm data were extracted for 72 out of a total of 81 aneurysms. Univariate analysis showed macrophage markers (CD68 and MPO, = 0.001 and = 0.002), endothelial cell markers (CD34 and CD31, = 0.007 and = 0.003), glycans (Alcian blue, = 0.003) and wall thickness ( = 0.030) were positively associated with enhancement. Aneurysm enhancement therefore appears to be associated with inflammatory infiltrate and neovascularisation. However, all these markers are correlated with each other, and the literature is limited in terms of the numbers of aneurysms analysed and the parameters considered. The data are therefore insufficient to determine if these associations are independent of each other or of aneurysm size, wall thickness and rupture status. Thus, the cause of aneurysm-wall enhancement currently remains unknown.
Leveraging real-world data to improve cochlear implant outcomes: Is the data available?
Findlay C, Edwards M, Hough K, Grasmeder M and Newman TA
Leveraging real-world data to improve cochlear implant outcomes: Is the data available?
Findlay C, Edwards M, Hough K, Grasmeder M and Newman TA
A small but persistent proportion of individuals do not gain the expected benefit from cochlear implants(CI). A step-change in the understanding of factors affecting outcomes could come through data science. This study evaluates clinical data capture to assess the quality and utility of CI user's health records for data science, by assessing the recording of otitis media. Otitis media was selected as it is associated with the development of sensorineural hearing loss and may affect cochlear implant outcomes.
A laser-induced mouse model of progressive retinal degeneration with central sparing displays features of parafoveal geographic atrophy
Khan AH, Soundara Pandi SP, Scott JA, Sánchez-Bretaño A, Lynn SA, Ratnayaka JA, Teeling JL and Lotery AJ
A laser-induced mouse model of progressive retinal degeneration with central sparing displays features of parafoveal geographic atrophy
Khan AH, Soundara Pandi SP, Scott JA, Sánchez-Bretaño A, Lynn SA, Ratnayaka JA, Teeling JL and Lotery AJ
There are no disease-modifying treatments available for geographic atrophy (GA), the advanced form of dry age-related macular degeneration. Current murine models fail to fully recapitulate the features of GA and thus hinder drug discovery. Here we describe a novel mouse model of retinal degeneration with hallmark features of GA. We used an 810 nm laser to create a retinal lesion with central sparing (RLCS), simulating parafoveal atrophy observed in patients with progressive GA. Laser-induced RLCS resulted in progressive GA-like pathology with the development of a confluent atrophic lesion. We demonstrate significant changes to the retinal structure and thickness in the central unaffected retina over a 24-week post-laser period, confirmed by longitudinal optical coherence tomography scans. We further show characteristic features of progressive GA, including a gradual reduction in the thickness of the central, unaffected retina and of total retinal thickness. Histological changes observed in the RLCS correspond to GA pathology, which includes the collapse of the outer nuclear layer, increased numbers of GFAP + , CD11b + and FcγRI + cells, and damage to cone and rod photoreceptors. We demonstrate a laser-induced mouse model of parafoveal GA progression, starting at 2 weeks post-laser and reaching confluence at 24 weeks post-laser. This 24-week time-frame in which GA pathology develops, provides an extended window of opportunity for proof-of-concept evaluation of drugs targeting GA. This time period is an added advantage compared to several existing models of geographic atrophy.
Biomarkers of Inflammation Increase with Tau and Neurodegeneration but not with Amyloid-β in a Heterogenous Clinical Cohort
Michopoulou S, Prosser A, Kipps C, Dickson J, Guy M and Teeling J
Biomarkers of Inflammation Increase with Tau and Neurodegeneration but not with Amyloid-β in a Heterogenous Clinical Cohort
Michopoulou S, Prosser A, Kipps C, Dickson J, Guy M and Teeling J
Neuroinflammation is an integral part of Alzheimer's disease (AD) pathology. Inflammatory mediators can exacerbate the production of amyloid-β (Aβ), the propagation of tau pathology and neuronal loss.
Perfusion Imaging and Inflammation Biomarkers Provide Complementary Information in Alzheimer's Disease
Michopoulou S, Prosser A, Dickson J, Guy M, Teeling JL and Kipps C
Perfusion Imaging and Inflammation Biomarkers Provide Complementary Information in Alzheimer's Disease
Michopoulou S, Prosser A, Dickson J, Guy M, Teeling JL and Kipps C
Single photon emission tomography (SPECT) can detect early changes in brain perfusion to support the diagnosis of dementia. Inflammation is a driver for dementia progression and measures of inflammation may further support dementia diagnosis.
The RESIST Study: Examining Cognitive Change in Rheumatoid Arthritis Patients with Mild Cognitive Impairment Being Treated with a TNF-Inhibitor Compared to a Conventional Synthetic Disease-Modifying Anti-Rheumatic Drug
Marr C, McDowell B, Holmes C, Edwards CJ, Cardwell C, McHenry M, Meenagh G, Teeling JL and McGuinness B
The RESIST Study: Examining Cognitive Change in Rheumatoid Arthritis Patients with Mild Cognitive Impairment Being Treated with a TNF-Inhibitor Compared to a Conventional Synthetic Disease-Modifying Anti-Rheumatic Drug
Marr C, McDowell B, Holmes C, Edwards CJ, Cardwell C, McHenry M, Meenagh G, Teeling JL and McGuinness B
Evidence suggests that TNF inhibitors (TNFi) used to treat rheumatoid arthritis (RA) may protect against Alzheimer's disease progression by reducing inflammation.
Curcumin as a Holistic Treatment for Tau Pathology
Sivanantharajah L and Mudher A
Curcumin as a Holistic Treatment for Tau Pathology
Sivanantharajah L and Mudher A
Global forecasts for prevalence of Alzheimer's Disease (AD) estimate that 152.8 million people will have dementia in 2050, a sharp rise from 57.4 million in 2019 (GBD 2019). This rise can be attributable to increases in population growth and aging, but in the absence of disease-modifying therapies it poses a huge societal challenge that must be addressed urgently. One way to combat this challenge is to explore the utility of holistic treatments that may protect against AD, including traditional herbs, spices and other nutraceuticals that are pharmacologically safe, inexpensive and readily available. In this light, the spice turmeric, and its active ingredient curcumin, has been investigated as a potential holistic treatment for AD over the past 2 decades; however, promising results with animal studies have not translated to success in clinical trials. One issue is that most animal models examining the effects of curcumin and curcumin derivatives in AD have been done with a focus at ameliorating amyloid pathology. Due to the limited success of Amyloid-β-based drugs in recent clinical trials, tau-focused therapeutics provide a promising alternative. In this article, we aim to provide a clearer picture of what is currently known about the effectiveness of curcumin and curcumin derivatives to ameliorate tau pathology. Tau focused studies may help inform more successful clinical studies by placing greater emphasis on the development and optimised delivery of curcumin derivatives that more effectively target tau pathology.
Age-related changes in tau and autophagy in human brain in the absence of neurodegeneration
Chatterjee S, Sealey M, Ruiz E, Pegasiou CM, Brookes K, Green S, Crisford A, Duque-Vasquez M, Luckett E, Robertson R, Richardson P, Vajramani G, Grundy P, Bulters D, Proud C, Vargas-Caballero M and Mudher A
Age-related changes in tau and autophagy in human brain in the absence of neurodegeneration
Chatterjee S, Sealey M, Ruiz E, Pegasiou CM, Brookes K, Green S, Crisford A, Duque-Vasquez M, Luckett E, Robertson R, Richardson P, Vajramani G, Grundy P, Bulters D, Proud C, Vargas-Caballero M and Mudher A
Tau becomes abnormally hyper-phosphorylated and aggregated in tauopathies like Alzheimers disease (AD). As age is the greatest risk factor for developing AD, it is important to understand how tau protein itself, and the pathways implicated in its turnover, change during aging. We investigated age-related changes in total and phosphorylated tau in brain samples from two cohorts of cognitively normal individuals spanning 19-74 years, without overt neurodegeneration. One cohort utilised resected tissue and the other used post-mortem tissue. Total soluble tau levels declined with age in both cohorts. Phosphorylated tau was undetectable in the post-mortem tissue but was clearly evident in the resected tissue and did not undergo significant age-related change. To ascertain if the decline in soluble tau was correlated with age-related changes in autophagy, three markers of autophagy were tested but only two appeared to increase with age and the third was unchanged. This implies that in individuals who do not develop neurodegeneration, there is an age-related reduction in soluble tau which could potentially be due to age-related changes in autophagy. Thus, to explore how an age-related increase in autophagy might influence tau-mediated dysfunctions in vivo, autophagy was enhanced in a Drosophila model and all age-related tau phenotypes were significantly ameliorated. These data shed light on age-related physiological changes in proteins implicated in AD and highlights the need to study pathways that may be responsible for these changes. It also demonstrates the therapeutic potential of interventions that upregulate turnover of aggregate-prone proteins during aging.
Tau-mediated axonal degeneration is prevented by activation of the Wld pathway
Stubbs K, Batchelor B, Sivanantharajah L, Sealey M, Ramirez-Moreno M, Ruiz E, Richardson B, Perry VH, Newman TA and Mudher A
Tau-mediated axonal degeneration is prevented by activation of the Wld pathway
Stubbs K, Batchelor B, Sivanantharajah L, Sealey M, Ramirez-Moreno M, Ruiz E, Richardson B, Perry VH, Newman TA and Mudher A
Tauopathy is characterized by neuronal dysfunction and degeneration occurring as a result of changes to the microtubule-associated protein tau. The neuronal changes evident in tauopathy bear striking morphological resemblance to those reported in models of Wallerian degeneration. The mechanisms underpinning Wallerian degeneration are not fully understood although it can be delayed by the expression of the slow Wallerian degeneration (Wld) protein, which has also been demonstrated to delay axonal degeneration in some models of neurodegenerative disease. Given the morphological similarities between tauopathy and Wallerian degeneration, this study investigated whether tau-mediated phenotypes can be modulated by co-expression of Wld. In a model of tauopathy in which expression of human 0N3R tau protein leads to progressive age-dependent phenotypes, Wld was expressed with and without activation of the downstream pathway. The olfactory receptor neuron circuit was used for these studies in adults, and the larval motor neuron system was employed in larvae. Tau phenotypes studied included neurodegeneration, axonal transport, synaptic deficits and locomotor behaviour. Impact on total tau was ascertained by assessing total, phosphorylated and misfolded tau levels by immunohistochemistry. Activation of the pathway downstream of Wld completely suppressed tau-mediated degeneration. This protective effect was evident even if the pathway downstream of Wld was activated several weeks after tau-mediated degeneration had become established. Though total tau levels were not altered, the protected neurons displayed significantly reduced MC1 immunoreactivity suggestive of clearance of misfolded tau, as well as a trend for a decline in tau species phosphorylated at the AT8 and PHF1 epitopes. In contrast, Wld expression without activation of the downstream protective pathway did not rescue tau-mediated degeneration in adults or improve tau-mediated neuronal dysfunction including deficits in axonal transport, synaptic alterations and locomotor behaviour in tau-expressing larvae. This collectively implies that the pathway mediating the protective effect of Wld intersects with the mechanism(s) of degeneration initiated by tau and can effectively halt tau-mediated degeneration at both early and late stages. Understanding the mechanisms underpinning this protection could identify much-needed disease-modifying targets for tauopathies.