A laser-induced mouse model of progressive retinal degeneration with central sparing displays features of parafoveal geographic atrophy
Khan AH, Soundara Pandi SP, Scott JA, Sánchez-Bretaño A, Lynn SA, Ratnayaka JA, Teeling JL and Lotery AJ
A laser-induced mouse model of progressive retinal degeneration with central sparing displays features of parafoveal geographic atrophy
Khan AH, Soundara Pandi SP, Scott JA, Sánchez-Bretaño A, Lynn SA, Ratnayaka JA, Teeling JL and Lotery AJ
There are no disease-modifying treatments available for geographic atrophy (GA), the advanced form of dry age-related macular degeneration. Current murine models fail to fully recapitulate the features of GA and thus hinder drug discovery. Here we describe a novel mouse model of retinal degeneration with hallmark features of GA. We used an 810 nm laser to create a retinal lesion with central sparing (RLCS), simulating parafoveal atrophy observed in patients with progressive GA. Laser-induced RLCS resulted in progressive GA-like pathology with the development of a confluent atrophic lesion. We demonstrate significant changes to the retinal structure and thickness in the central unaffected retina over a 24-week post-laser period, confirmed by longitudinal optical coherence tomography scans. We further show characteristic features of progressive GA, including a gradual reduction in the thickness of the central, unaffected retina and of total retinal thickness. Histological changes observed in the RLCS correspond to GA pathology, which includes the collapse of the outer nuclear layer, increased numbers of GFAP + , CD11b + and FcγRI + cells, and damage to cone and rod photoreceptors. We demonstrate a laser-induced mouse model of parafoveal GA progression, starting at 2 weeks post-laser and reaching confluence at 24 weeks post-laser. This 24-week time-frame in which GA pathology develops, provides an extended window of opportunity for proof-of-concept evaluation of drugs targeting GA. This time period is an added advantage compared to several existing models of geographic atrophy.
Inflammation in dementia with Lewy bodies
Amin J, Erskine D, Donaghy PC, Surendranathan A, Swann P, Kunicki AP, Boche D, Holmes C, McKeith IG, O'Brien JT, Teeling JL and Thomas AJ
Inflammation in dementia with Lewy bodies
Amin J, Erskine D, Donaghy PC, Surendranathan A, Swann P, Kunicki AP, Boche D, Holmes C, McKeith IG, O'Brien JT, Teeling JL and Thomas AJ
Dementia with Lewy bodies (DLB) is the second most common neurodegenerative cause of dementia, behind Alzheimer's disease (AD). The profile of inflammation in AD has been extensively researched in recent years, with evidence that chronic peripheral inflammation in midlife increases the risk of late-onset AD, and data supporting inflammation being associated with disease progression. In contrast, our understanding of the role of inflammation in DLB is less developed. Most research to date has examined inflammation in related disorders, such as Parkinson's disease, but there is now a growing range of literature examining inflammation in DLB itself. We present a review of the literature in this field, exploring a range of research methodologies including those quantifying markers of inflammation in cerebrospinal fluid, peripheral blood, post-mortem brain tissue, and using neuroimaging and preclinical data. Our review reveals evidence from PET imaging and peripheral blood analysis to support an increase in cerebral and peripheral inflammation in mild or prodromal DLB, that dissipates with disease progression. We present evidence from post-mortem brain tissue and pre-clinical studies that indicate α-synuclein directly promotes inflammation, but that also support the presence of AD co-pathology as an important factor in the profile of neuroinflammation in DLB. We propose that specific markers of inflammation may play a sentinel role in the mild stage of the disease, particularly when combined with AD pathology. We advocate further examination of the profile of inflammation in DLB through robust longitudinal studies, to enhance our understanding of the pathogenesis of the disease. The goal should be to utilise future results to develop a composite biomarker to aid diagnosis of DLB, and to potentially identify novel therapeutic targets.
Research priorities for neuroimmunology: identifying the key research questions to be addressed by 2030
MacKenzie G, Subramaniam S, Caldwell LJ, Fitzgerald D, Harrison NA, Hong S, Irani SR, Khandaker GM, Liston A, Miron VE, Mondelli V, Morgan BP, Pariante C, Shah DK, Taams LS, Teeling JL and Upthegrove R
Research priorities for neuroimmunology: identifying the key research questions to be addressed by 2030
MacKenzie G, Subramaniam S, Caldwell LJ, Fitzgerald D, Harrison NA, Hong S, Irani SR, Khandaker GM, Liston A, Miron VE, Mondelli V, Morgan BP, Pariante C, Shah DK, Taams LS, Teeling JL and Upthegrove R
Neuroimmunology in the broadest sense is the study of interactions between the nervous and the immune systems. These interactions play important roles in health from supporting neural development, homeostasis and plasticity to modifying behaviour. Neuroimmunology is increasingly recognised as a field with the potential to deliver a significant positive impact on human health and treatment for neurological and psychiatric disorders. Yet, translation to the clinic is hindered by fundamental knowledge gaps on the underlying mechanisms of action or the optimal timing of an intervention, and a lack of appropriate tools to visualise and modulate both systems. Here we propose ten key disease-agnostic research questions that, if addressed, could lead to significant progress within neuroimmunology in the short to medium term. We also discuss four cross-cutting themes to be considered when addressing each question: i) bi-directionality of neuroimmune interactions; ii) the biological context in which the questions are addressed (e.g. health vs disease vs across the lifespan); iii) tools and technologies required to fully answer the questions; and iv) translation into the clinic. We acknowledge that these ten questions cannot represent the full breadth of gaps in our understanding; rather they focus on areas which, if addressed, may have the most broad and immediate impacts. By defining these neuroimmunology priorities, we hope to unite existing and future research teams, who can make meaningful progress through a collaborative and cross-disciplinary effort.
Systemic Inflammation Accelerates Changes in Microglial and Synaptic Markers in an Experimental Model of Chronic Neurodegeneration
Chouhan JK, Püntener U, Booth SG and Teeling JL
Systemic Inflammation Accelerates Changes in Microglial and Synaptic Markers in an Experimental Model of Chronic Neurodegeneration
Chouhan JK, Püntener U, Booth SG and Teeling JL
Bacterial infections are a common cause of morbidity and mortality in the elderly, and particularly in individuals with a neurodegenerative disease. Experimental models of neurodegeneration have shown that LPS-induced systemic inflammation increases neuronal damage, a process thought to be mediated by activation of "primed" microglia. The effects of a real systemic bacterial infection on the innate immune cells in the brain and neuronal networks are less well described, and therefore, in this study we use the ME7 prion model to investigate the alterations in microglia activation and phenotype and synaptic markers in response to a low grade, live bacterial infection. Mice with or without a pre-existing ME7 prion-induced neurodegenerative disease were given a single systemic injection of live at early or mid-stage of disease progression. Immune activation markers CD11b and MHCII and pro-inflammatory cytokines were analyzed 4 weeks post-infection. Systemic infection with resulted in an exaggerated inflammatory response when compared to ME7 prion mice treated with saline. These changes to inflammatory markers were most pronounced at mid-stage disease. Analysis of synaptic markers in ME7 prion mice revealed a significant reduction of genes that are associated with early response in synaptic plasticity, extracellular matrix structure and post-synaptic density, but no further reduction following systemic infection. In contrast, analysis of activity-related neuronal receptors involved in development of learning and memory, such as and , showed a significant decrease in response to systemic bacterial challenge. These changes were observed early in the disease progression and associated with reduced burrowing activity. The exaggerated innate immune activation and altered expression of genes linked to synaptic plasticity may contribute to the onset and/or progression of neurodegeneration.
Biomarkers of Inflammation Increase with Tau and Neurodegeneration but not with Amyloid-β in a Heterogenous Clinical Cohort
Michopoulou S, Prosser A, Kipps C, Dickson J, Guy M and Teeling J
Biomarkers of Inflammation Increase with Tau and Neurodegeneration but not with Amyloid-β in a Heterogenous Clinical Cohort
Michopoulou S, Prosser A, Kipps C, Dickson J, Guy M and Teeling J
Neuroinflammation is an integral part of Alzheimer's disease (AD) pathology. Inflammatory mediators can exacerbate the production of amyloid-β (Aβ), the propagation of tau pathology and neuronal loss.