people
Dr Amritpal Mudher
Tau, amyloid and neuronal biology

Professor of Neuroscience
Theme Group:
About:
Current theme Projects:
No related projects to show just yet
Recent publications:
Suppression of tau-induced phenotypes by vitamin E demonstrates the dissociation of oxidative stress and phosphorylation in mechanisms of tau toxicity
Suppression of tau-induced phenotypes by vitamin E demonstrates the dissociation of oxidative stress and phosphorylation in mechanisms of tau toxicity
Various lines of evidence implicate oxidative stress in the pathogenic mechanism(s) underpinning tauopathies. Consequently, antioxidant therapies have been considered in clinical practice for the treatment of tauopathies such as Alzheimer's disease (AD), but with mixed results. We and others have previously reported increased protein oxidation upon expression of both human 0N3R (hTau ) and 0N4R (hTau ) tau in vivo. Building on these studies, we demonstrate here the suppression of hTau associated phenotypes in Drosophila melanogaster after treatment with vitamin C or vitamin E. Curiously the rescue of phenotype was seen without alteration in total tau level or alteration in phosphorylation at a number of disease-associated sites. Moreover, treatment with paraquat, a pro-oxidant drug, did not exacerbate the hTau phenotypes. This result following paraquat treatment is reminiscent of our previous findings with hTau which also causes greater oxidative stress when compared to hTau but has a milder phenotype. Collectively our data imply that the role of oxidative stress in tau-mediated toxicity is not straight forward and there may be isoform-specific effects as well as contribution of other factors. This may explain the ambiguous effects of anti-oxidant treatments on clinical outcome in dementia patients.
An evaluation of Drosophila as a model system for studying tauopathies such as Alzheimer's disease
An evaluation of Drosophila as a model system for studying tauopathies such as Alzheimer's disease
Work spanning almost two decades using the fruit fly, Drosophila melanogaster, to study tau-mediated neurodegeneration has provided valuable and novel insights into the causes and mechanisms of tau-mediated toxicity and dysfunction in tauopathies such as Alzheimer's disease (AD). The fly has proven to be an excellent model for human diseases because of its cost efficiency, and the availability of powerful genetic tools for use in a comparatively less-complicated, but evolutionarily conserved, in vivo system. In this review, we provide a critical evaluation of the insights provided by fly models, highlighting both the advantages and limitations of the system. The fly has contributed to a greater understanding of the causes of tau abnormalities, the role of these abnormalities in mediating toxicity and/or dysfunction, and the nature of causative species mediating tau-toxicity. However, it is not possible to perfectly model all aspects of human degenerative diseases. What sets the fly apart from other animal models is its genetic tractability, which makes it highly amenable to overcoming experimental limitations. The explosion of genetic technology since the first fly disease models were established has translated into fly lines that allow for greater temporal control in restricting tau expression to single neuron types, and lines that can label and monitor the function of subcellular structures and components; thus, fly models offer an unprecedented view of the neurodegenerative process. Emerging genetic technology means that the fly provides an ever-evolving experimental platform for studying disease.
Pyroglutamate and Isoaspartate modified Amyloid-Beta in ageing and Alzheimer's disease
Pyroglutamate and Isoaspartate modified Amyloid-Beta in ageing and Alzheimer's disease
Alzheimer's disease (AD) is the most common cause of dementia among older adults. Accumulation of amyloid-β (Aβ) in the brain is considered central in AD pathogenesis and its understanding crucial for developing new diagnostic and therapeutic approaches. Recent literature suggests that ageing may induce post translational modifications in Aβ, in the form of spontaneous amino acid modifications, which enhance its pathogenic properties, contributing to its aggregation.In this study, we have investigated whether the isoaspartate (IsoD-Aβ) and pyroglutamate (pE3-Aβ) modified forms of Aβ are significantly associated with AD pathology or represent markers of ageing. Cerebral neocortex of 27 AD cases, 32 old controls (OC) and 11 young controls (YC) was immunostained for pE3-Aβ and IsoD-Aβ, quantified as protein load and correlated with other Aβ forms and p-TAU. IsoD-Aβ and pE3-Aβ were detected at low levels in non-demented controls, and significantly increased in AD (p ≤ 0.001), with a characteristic deposition of IsoD-Aβ in blood vessel walls and pE3-Aβ within neurons. Both AD and OC showed positive associations between IsoD-Aβ and Aβ (p = 0.003 in AD and p = 0.001 in OC) and between IsoD-Aβ and pE3-Aβ (p = 0.001 in AD and OC). This last association was the only significant pE3-Aβ correlation identified in AD, whereas in the control cohorts pE3-Aβ also correlated with Aβ and AβPP (p = 0.001 in OC and p = 0.010 in YC).Our analyses suggest that IsoD-Aβ accumulation starts with ageing; whereas pE3-Aβ deposition is more closely linked to AD. Our findings support the importance of age-related modifications of Aβ in AD pathogenesis.
Alzheimer's Disease and Type 2 Diabetes: A Critical Assessment of the Shared Pathological Traits
Alzheimer's Disease and Type 2 Diabetes: A Critical Assessment of the Shared Pathological Traits
Alzheimer's disease (AD) and Type 2 Diabetes Mellitus (T2DM) are two of the most prevalent diseases in the elderly population worldwide. A growing body of epidemiological studies suggest that people with T2DM are at a higher risk of developing AD. Likewise, AD brains are less capable of glucose uptake from the surroundings resembling a condition of brain insulin resistance. Pathologically AD is characterized by extracellular plaques of Aβ and intracellular neurofibrillary tangles of hyperphosphorylated tau. T2DM, on the other hand is a metabolic disorder characterized by hyperglycemia and insulin resistance. In this review we have discussed how Insulin resistance in T2DM directly exacerbates Aβ and tau pathologies and elucidated the pathophysiological traits of synaptic dysfunction, inflammation, and autophagic impairments that are common to both diseases and indirectly impact Aβ and tau functions in the neurons. Elucidation of the underlying pathways that connect these two diseases will be immensely valuable for designing novel drug targets for Alzheimer's disease.
Insulin-Mediated Changes in Tau Hyperphosphorylation and Autophagy in a Model of Tauopathy and Neuroblastoma Cells
Insulin-Mediated Changes in Tau Hyperphosphorylation and Autophagy in a Model of Tauopathy and Neuroblastoma Cells
Almost 50 million people in the world are affected by dementia; the most prevalent form of which is Alzheimer's disease (AD). Although aging is considered to be the main risk factor for AD, growing evidence from epidemiological studies suggests that type 2 diabetes mellitus (T2DM) increases the risk of dementia including AD. Defective brain insulin signaling has been suggested as an early event in AD and other tauopathies but the mechanisms that link these diseases are largely unknown. Tau hyperphosphorylation is a hallmark of neurofibrillary pathology and insulin resistance increases the number of neuritic plaques particularly in AD. Utilizing a combination of our models of tauopathy (expressing the 2N4R-Tau) and neuroblastoma cells, we have attempted to decipher the pathways downstream of the insulin signaling cascade that lead to tau hyperphosphorylation, aggregation and autophagic defects. Using cell-based, genetic, and biochemical approaches we have demonstrated that tau phosphorylation at AT8 and PHF1 residues is enhanced in an insulin-resistant environment. We also show that insulin-induced changes in total and phospho-tau are mediated by the crosstalk of AKT, glycogen synthase kinase-3β, and extracellular regulating kinase located downstream of the insulin receptor pathway. Finally, we demonstrate a significant change in the levels of the key proteins in the mammalian target of rapamycin/autophagy pathway, implying an increased impairment of aggregated protein clearance in our transgenic models and cultured neuroblastoma cells.
Contact:
School of Biological Sciences
University of Southampton
Highfield Campus
Southampton
SO17 1BJ